查看“︁三角函數精確值”︁的源代码
←
三角函數精確值
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''三角函數精確值'''是利用[[三角恆等式|三角函數的公式]]將特定的[[三角函數]]值加以化簡,並以數學[[方根|根式]]或[[分數]]表示 用[[方根|根式]]或[[分數]]表達的精確[[三角函數]]有時很有用,主要用於簡化的解決某些[[方程式]]能進一步化簡。 '''注意''':以下為相同角度的轉換表: {{相同角度的轉換表}} ==計算方式== ===基於常識=== 例如:0°、30°、45° [[File:Unit_circle_angles.svg|center|500px|單位圓]] ===經由[[三角恒等式#倍角公式和半角公式|半角公式]]的計算=== 例如:15°、22.5° :<math>\sin\left(\frac{x}{2}\right) = \pm\, \sqrt{\tfrac{1}{2}(1 - \cos x)}</math> :<math>\cos\left(\frac{x}{2}\right) = \pm\, \sqrt{\tfrac{1}{2}(1 + \cos x)}</math> ===利用[[三角恒等式#倍角公式和半角公式|三倍角公式]]求<math>\frac{1}{3}\,</math>角=== 例如:10°、20°、7°......等,非三的倍數的角的精確值。 *<math>\sin 3\theta = 3 \sin \theta- 4 \sin^3\theta \,</math> *<math>\cos 3\theta = 4 \cos^3\theta - 3 \cos \theta \,</math> 把它改為 *<math>\sin \theta = 3 \sin \frac{1}{3}\theta- 4 \sin^3\frac{1}{3}\theta \,</math> *<math>\cos \theta = 4 \cos^3\frac{1}{3}\theta - 3 \cos \frac{1}{3}\theta \,</math> 把<math>\cos \frac{1}{3}\theta \,</math>當成未知數,<math>\cos \theta \,</math>當成常數項 解[[三次方程|一元三次方程式]]即可求出 例如:<math>\sin\frac{\pi}{9}=\sin 20^\circ=\sqrt[3]{-\frac{\sqrt{3}}{16}+\sqrt{-\frac{1}{256}}}+\sqrt[3]{-\frac{\sqrt{3}}{16}-\sqrt{-\frac{1}{256}}}</math> ===經由合角公式的計算=== 例如:21° = 9° + 12° :<math>\sin(x \pm y) = \sin(x) \cos(y) \pm \cos(x) \sin(y)\,</math> :<math>\cos(x \pm y) = \cos(x) \cos(y) \mp \sin(x) \sin(y)\,</math> ===經由托勒密定理的計算=== {{see|托勒密定理|弦 (幾何)}} [[File:Ptolemy Pentagon.svg|right|thumb|Chord(36°) = a/b = 1/f, from [[托勒密定理]] ]] 例如:18° : <math>\mathrm{crd}\ {36^\circ}=\mathrm{crd}\left(\angle\mathrm{ADB}\right)=\frac{a}{b}=\frac{2}{1+\sqrt{5}}</math> : <math>\mathrm{crd}\ {\theta}=2\sin{\frac{\theta}{2}}\,</math> : <math>\sin{18^\circ}=\frac{1}{1+\sqrt{5}}=\tfrac{1}{4}\left(\sqrt5-1\right)</math> == 三角函數精確值列表 == 由於三角函數的特性,大於45°角度的三角函數值,可以經由自0°~ 45°的角度的三角函數值的相關的計算取得。 === 0°: 根本=== : <math>\sin 0=0\,</math> : <math>\cos 0=1\,</math> : <math>\tan 0=0\,</math> === 3°: 正60邊形 === : <math>\sin\frac{\pi}{60}=\sin 3^\circ=\tfrac{1}{16} \left[2(1-\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3+1)\right]\,</math> : <math>\cos\frac{\pi}{60}=\cos 3^\circ=\tfrac{1}{16} \left[2(1+\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3-1)\right]\,</math> : <math>\tan\frac{\pi}{60}=\tan 3^\circ=\tfrac{1}{4} \left[(2-\sqrt3)(3+\sqrt5)-2\right]\left[2-\sqrt{2(5-\sqrt5)}\right]\,</math> === 6°: 正30邊形=== : <math>\sin\frac{\pi}{30}=\sin 6^\circ=\tfrac{1}{8} \left[\sqrt{6(5-\sqrt5)}-\sqrt5-1\right]\,</math> : <math>\cos\frac{\pi}{30}=\cos 6^\circ=\tfrac{1}{8} \left[\sqrt{2(5-\sqrt5)}+\sqrt3(\sqrt5+1)\right]\,</math> : <math>\tan\frac{\pi}{30}=\tan 6^\circ=\tfrac{1}{2} \left[\sqrt{2(5-\sqrt5)}-\sqrt3(\sqrt5-1)\right]\,</math> === 9°: 正20邊形=== : <math>\sin\frac{\pi}{20}=\sin 9^\circ=\tfrac{1}{8} \left[\sqrt2(\sqrt5+1)-2\sqrt{5-\sqrt5}\right]\,</math> : <math>\cos\frac{\pi}{20}=\cos 9^\circ=\tfrac{1}{8} \left[\sqrt2(\sqrt5+1)+2\sqrt{5-\sqrt5}\right]\,</math> : <math>\tan\frac{\pi}{20}=\tan 9^\circ=\sqrt5+1-\sqrt{5+2\sqrt5}\,</math> === 10° === :<math>{}_{\tan10^\circ=-\frac{-1-\sqrt{3}{\rm{i}}}{6}\sqrt[3]{-12\sqrt3 + 36{\rm{i}}}-\frac{-1+\sqrt{3}{\rm{i}}}{6}\sqrt[3]{-12\sqrt3 - 36{\rm{i}}} + \frac{\sqrt3}{3}}\,</math> === 12°: [[十五邊形|正十五邊形]]=== : <math>\sin\frac{\pi}{15}=\sin 12^\circ=\tfrac{1}{8} \left[\sqrt{2(5+\sqrt5)}-\sqrt3(\sqrt5-1)\right]\,</math> : <math>\cos\frac{\pi}{15}=\cos 12^\circ=\tfrac{1}{8} \left[\sqrt{6(5+\sqrt5)}+\sqrt5-1\right]\,</math> : <math>\tan\frac{\pi}{15}=\tan 12^\circ=\tfrac{1}{2} \left[\sqrt3(3-\sqrt5)-\sqrt{2(25-11\sqrt5)}\right]\,</math> === 15°: [[十二邊形|正十二邊形]] === : <math>\sin\frac{\pi}{12}=\sin 15^\circ=\tfrac{1}{4}\sqrt2(\sqrt3-1)\,</math> : <math>\cos\frac{\pi}{12}=\cos 15^\circ=\tfrac{1}{4}\sqrt2(\sqrt3+1)\,</math> : <math>\tan\frac{\pi}{12}=\tan 15^\circ=2-\sqrt3\,</math> === 18°: [[十邊形|正十邊形]] === : <math>\sin\frac{\pi}{10}=\sin 18^\circ=\tfrac{1}{4}\left(\sqrt5-1\right)=\tfrac{1}{2}\varphi^{-1}\,</math> : <math>\cos\frac{\pi}{10}=\cos 18^\circ=\tfrac{1}{4}\sqrt{2(5+\sqrt5)}\,</math> : <math>\tan\frac{\pi}{10}=\tan 18^\circ=\tfrac{1}{5}\sqrt{5(5-2\sqrt5)}\,</math> === 20°: [[九邊形|正九邊形]] 和 60°的三分之一(<math>\frac{1}{3}\,</math> 60°) === : <math>\sin\frac{\pi}{9}=\sin 20^\circ=\sqrt[3]{-\frac{\sqrt{3}}{16}+\sqrt{-\frac{1}{256}}}+\sqrt[3]{-\frac{\sqrt{3}}{16}-\sqrt{-\frac{1}{256}}}=</math> :: <math>2^{-\frac{4}{3}}(\sqrt[3]{i-\sqrt{3}}-\sqrt[3]{i+\sqrt{3}})</math> : <math>\cos\frac{\pi}{9}=\cos 20^\circ=</math> :: <math>2^{-\frac{4}{3}}(\sqrt[3]{1+i\sqrt{3}}+\sqrt[3]{1-i\sqrt{3}})</math> === 21°: 9° 與 12°的[[加法|和]] === : <math>\sin\frac{7\pi}{60}=\sin 21^\circ=\tfrac{1}{16}\left[2(\sqrt3+1)\sqrt{5-\sqrt5}-\sqrt2(\sqrt3-1)(1+\sqrt5)\right]\,</math> : <math>\cos\frac{7\pi}{60}=\cos 21^\circ=\tfrac{1}{16}\left[2(\sqrt3-1)\sqrt{5-\sqrt5}+\sqrt2(\sqrt3+1)(1+\sqrt5)\right]\,</math> : <math>\tan\frac{7\pi}{60}=\tan 21^\circ=\tfrac{1}{4}\left[2-(2+\sqrt3)(3-\sqrt5)\right]\left[2-\sqrt{2(5+\sqrt5)}\right]\,</math> === <math>(21\frac{3}{17}^{\circ}) , \,</math>(360/17)°:[[十七邊形|正17邊形]]=== :<math>\operatorname{cos}{2\pi\over17}=\frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}}}{16}.</math> === 22.5°: [[八邊形|正八邊形]] === : <math>\sin\frac{\pi}{8}=\sin 22.5^\circ=\tfrac{1}{2}(\sqrt{2-\sqrt{2}}),</math> : <math>\cos\frac{\pi}{8}=\cos 22.5^\circ=\tfrac{1}{2}(\sqrt{2+\sqrt{2}})\,</math> : <math>\tan\frac{\pi}{8}=\tan 22.5^\circ=\sqrt{2}-1\,</math> === 24°: 兩倍的 12° 角 === : <math>\sin\frac{2\pi}{15}=\sin 24^\circ=\tfrac{1}{8}\left[\sqrt3(\sqrt5+1)-\sqrt2\sqrt{5-\sqrt5}\right]\,</math> : <math>\cos\frac{2\pi}{15}=\cos 24^\circ=\tfrac{1}{8}\left(\sqrt6\sqrt{5-\sqrt5}+\sqrt5+1\right)\,</math> : <math>\tan\frac{2\pi}{15}=\tan 24^\circ=\tfrac{1}{2}\left[\sqrt{2(25+11\sqrt5)}-\sqrt3(3+\sqrt5)\right]\,</math> === 25(6/7)°,(180/7)°:[[七邊形|正七邊形]]=== : <math>\cos\frac{\pi}{7}=\cos\frac{180}{7}^\circ=\cos 25\frac{6}{7}^\circ=\frac{1}{6}+\frac{1-\sqrt{3} i}{24}\sqrt[3]{28-84\sqrt{3} i}+\frac{1+\sqrt{3} i}{24}\sqrt[3]{28-84\sqrt{3} i}</math> === 27°: 12° 與 15° 的和=== : <math>\sin\frac{3\pi}{20}=\sin 27^\circ=\tfrac{1}{8}\left[2\sqrt{5+\sqrt5}-\sqrt2\;(\sqrt5-1)\right]\,</math> : <math>\cos\frac{3\pi}{20}=\cos 27^\circ=\tfrac{1}{8}\left[2\sqrt{5+\sqrt5}+\sqrt2\;(\sqrt5-1)\right]\,</math> : <math>\tan\frac{3\pi}{20}=\tan 27^\circ=\sqrt5-1-\sqrt{5-2\sqrt5}\,</math> === 30°: [[六邊形|正六邊形]] === : <math>\sin\frac{\pi}{6}=\sin 30^\circ=\tfrac{1}{2}\,</math> : <math>\cos\frac{\pi}{6}=\cos 30^\circ=\tfrac{1}{2}\sqrt3\,</math> : <math>\tan\frac{\pi}{6}=\tan 30^\circ=\tfrac{1}{3}\sqrt3\,</math> === 33°: 15° 與 18° [[加法|之和]]=== : <math>\sin\frac{11\pi}{60}=\sin 33^\circ=\tfrac{1}{16}\left[2(\sqrt3-1)\sqrt{5+\sqrt5}+\sqrt2(1+\sqrt3)(\sqrt5-1)\right]\,</math> : <math>\cos\frac{11\pi}{60}=\cos 33^\circ=\tfrac{1}{16}\left[2(\sqrt3+1)\sqrt{5+\sqrt5}+\sqrt2(1-\sqrt3)(\sqrt5-1)\right]\,</math> : <math>\tan\frac{11\pi}{60}=\tan 33^\circ=\tfrac{1}{4}\left[2-(2-\sqrt3)(3+\sqrt5)\right]\left[2+\sqrt{2(5-\sqrt5)}\right]\,</math> === 36°: [[五邊形|正五邊形]] === : <math>\sin\frac{\pi}{5}=\sin 36^\circ=\tfrac14[\sqrt{2(5-\sqrt5)}]\,</math> : <math>\cos\frac{\pi}{5}=\cos 36^\circ=\frac{1+\sqrt5}{4}=\tfrac{1}{2}\varphi\,</math> : <math>\tan\frac{\pi}{5}=\tan 36^\circ=\sqrt{5-2\sqrt5}\,</math> === 39°: 18°角加21°角 === : <math>\sin\frac{13\pi}{60}=\sin 39^\circ=\tfrac1{16}[2(1-\sqrt3)\sqrt{5-\sqrt5}+\sqrt2(\sqrt3+1)(\sqrt5+1)]\,</math> : <math>\cos\frac{13\pi}{60}=\cos 39^\circ=\tfrac1{16}[2(1+\sqrt3)\sqrt{5-\sqrt5}+\sqrt2(\sqrt3-1)(\sqrt5+1)]\,</math> : <math>\tan\frac{13\pi}{60}=\tan 39^\circ=\tfrac14\left[(2-\sqrt3)(3-\sqrt5)-2\right]\left[2-\sqrt{2(5+\sqrt5)}\right]\,</math> === 42°: 21°的[[2|兩]][[倍數|倍]] === : <math>\sin\frac{7\pi}{30}=\sin 42^\circ=\frac{\sqrt6\sqrt{5+\sqrt5}-\sqrt5+1}{8}\,</math> : <math>\cos\frac{7\pi}{30}=\cos 42^\circ=\frac{\sqrt2\sqrt{5+\sqrt5}+\sqrt3(\sqrt5-1)}{8}\,</math> : <math>\tan\frac{7\pi}{30}=\tan 42^\circ=\frac{\sqrt3(\sqrt5+1)-\sqrt2\sqrt{5+\sqrt5}}{2}\,</math> === 45°: [[正方形]] === : <math>\sin\frac{\pi}{4}=\sin 45^\circ=\frac{\sqrt2}{2}=\frac{1}{\sqrt2}\,</math> : <math>\cos\frac{\pi}{4}=\cos 45^\circ=\frac{\sqrt2}{2}=\frac{1}{\sqrt2}\,</math> : <math>\tan\frac{\pi}{4}=\tan 45^\circ=1</math> ==相關== {{see|三角函數|三角恆等式}} {{see|:en:Generating trigonometric tables}} ==參見== *[[可作图多边形]] *[[:en:Trigonometric_number|三角數]] *[[十七邊形]] ==參考文獻== * {{MathWorld|title=Constructible polygon|urlname=ConstructiblePolygon}} * {{MathWorld|title=Trigonometry angles|urlname=TrigonometryAngles}} ** [http://mathworld.wolfram.com/TrigonometryAnglesPi3.html π/3 (60°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi6.html π/6 (30°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi12.html π/12 (15°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi24.html π/24 (7.5°)] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi4.html π/4 (45°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi8.html π/8 (22.5°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi16.html π/16 (11.25°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi32.html π/32 (5.625°)] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi5.html π/5 (36°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi10.html π/10 (18°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi20.html π/20 (9°)] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi7.html π/7] — ''π/14'' ** [http://mathworld.wolfram.com/TrigonometryAnglesPi9.html π/9 (20°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi18.html π/18 (10°)] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi11.html π/11] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi13.html π/13] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi15.html π/15 (12°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi30.html π/30 (6°)] ** [http://mathworld.wolfram.com/TrigonometryAnglesPi17.html π/17] ** ''π/19'' ** [http://mathworld.wolfram.com/TrigonometryAnglesPi23.html π/23] * {{Cite journal |first1=Paul |last1=Bracken |first2=Jiri |last2=Cizek |title=Evaluation of quantum mechanical perturbation sums in terms of quadratic surds and their use in approximation of zeta(3)/pi^3 |journal=Int. J. Quantum Chemistry |volume=90 |issue=1 |year=2002 |pages=42–53 |doi=10.1002/qua.1803 }} * {{cite arxiv |first1=John H. |last1=Conway |first2=Charles |last2=Radin |first3=Lorenzo |last3=Radun |title=On angles whose squared trigonometric functions are rational |year=1998 |eprint=math-ph/9812019 }} * {{cite journal |first1=John H. |last1=Conway |first2=Charles |last2=Radin |first3=Lorenzo |last3=Radun |title=On angles whose squared trigonometric functions are rational |journal=Disc. Comput. Geom. |year=1999 |volume=22 |issue=3 |doi=10.1007/PL00009463 |pages=321–332 }} {{MR|1706614}} * {{cite journal |first1=Kurt |last1=Girstmair |title=Some linear relations between values of trigonometric functions at k*pi/n |journal=Acta Arithmetica |volume=81 |year=1997 |pages=387–398 }} {{MR|1472818}} * {{cite journal |first1=S. |last1=Gurak |title=On the minimal polynomial of gauss periods for prime powers |journal=Mathematics of Computation |volume=75 |year=2006 |issue=256 |pages=2021–2035 |doi=10.1090/S0025-5718-06-01885-0 |bibcode=2006MaCom..75.2021G }} {{MR|2240647}} * {{cite journal |first1=L. D. |last1=Servi |title=Nested square roots of 2 |journal=Am. Math. Monthly |volume=110 |year=2003 |issue=4 |pages=326–330 |doi=10.2307/3647881 }} {{MR|1984573}} {{JSTOR|3647881}} [[Category:三角学]]
该页面使用的模板:
Template:Cite arxiv
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:JSTOR
(
查看源代码
)
Template:MR
(
查看源代码
)
Template:MathWorld
(
查看源代码
)
Template:See
(
查看源代码
)
Template:相同角度的轉換表
(
查看源代码
)
返回
三角函數精確值
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息