查看“︁School:李煌數學研究院/伽羅華群論之n次方程研究”︁的源代码
←
School:李煌數學研究院/伽羅華群論之n次方程研究
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
== 一 == 代數方程<math>x^{5}+{{(\frac{\sqrt{p+4}-\sqrt{p}}{2})}^\frac{3}{5}}x=\frac{1}{p^{\frac{5}{8}}} </math>存在李煌根式解形式 <math>x=\left(\frac{{(\sqrt{p+4}-\sqrt{p})}^{2}}{4p^{\frac{5}{8}}}\right)^{\frac{1}{5}},p>0,p\in\mathbb{R}\lor p=-1</math> <math>x=\frac{\left(\frac{{(\sqrt{p+4}-\sqrt{p})}^{2}}{4p^{\frac{5}{8}}}\right)^{\frac{1}{5}}}{\cos(\frac{2\pi}{5})+isin(\frac{2\pi}{5})},p<0,p\ne -1,p\in\mathbb{R}</math> * 例如 p=-12時,代數方程<math>x^{5}+{{(\frac{\sqrt{-8}-\sqrt{-12}}{2})}^\frac{3}{5}}x=\frac{1}{{(-12)}^{\frac{5}{8}}} </math>存在根式解<math>x=\frac{\left(\frac{{(\sqrt{-8}-\sqrt{-12})}^{2}}{4{(-12)}^{\frac{5}{8}}}\right)^{\frac{1}{5}}}{\cos(\frac{2\pi}{5})+isin(\frac{2\pi}{5})}</math> * 例如 p=5時,代數方程<math>x^{5}+{{(\frac{{3}-\sqrt{5}}{2})}^\frac{3}{5}}x=\frac{1}{5^{\frac{5}{8}}} </math>存在根式解<math>x=\left(\frac{{(3-\sqrt{5})}^{2}}{4\times 5^{\frac{5}{8}}}\right)^{\frac{1}{5}}</math> '''注明:''' 以上仅爲特殊五次方程之解,並非壹般五次方程之解! '''推广''' 代數方程<math>x^{n}+{{(\frac{\sqrt{p+4}-\sqrt{p}}{2})}^\frac{n-2}{n}}x=\frac{1}{p^{\frac{n}{2n-2}}} </math>存在李煌根式解形式 <math>x=\left(\frac{{(\sqrt{p+4}-\sqrt{p})}^{2}}{4p^{\frac{n}{2n-2}}}\right)^{\frac{1}{n}},p>0,p\in\mathbb{R}\lor p=-1</math> <math>x=\frac{\left(\frac{{(\sqrt{p+4}-\sqrt{p})}^{2}}{4p^{\frac{n}{2n-2}}}\right)^{\frac{1}{n}}}{\cos(\frac{2\pi}{n})+isin(\frac{2\pi}{n})},p<0,p\ne -1,p\in\mathbb{R}</math> == 二 == 代數方程<math>x^{7}=1</math>存在李煌根式解 <math>x_7=1</math> <math>x_1=\frac{ 3(-2548+588\sqrt{3}i)^{\frac{1}{3}}+ \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} -2184+540\sqrt{3}i +168(-2548+588\sqrt{3}i)^{\frac{1}{3}} } }{-3(-2548+588\sqrt{3}i)^{\frac{1}{3}}+ \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} -2184+540\sqrt{3}i +168(-2548+588\sqrt{3}i)^{\frac{1}{3}} } }</math> <math>x_2=\frac{ 3(-2548+588\sqrt{3}i)^{\frac{1}{3}}- \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} -2184+540\sqrt{3}i +168(-2548+588\sqrt{3}i)^{\frac{1}{3}} } }{-3(-2548+588\sqrt{3}i)^{\frac{1}{3}}- \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} -2184+540\sqrt{3}i +168(-2548+588\sqrt{3}i)^{\frac{1}{3}} } }</math> <math>x_3=\frac{ 3(-2548+588\sqrt{3}i)^{\frac{1}{3}}+ \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} +336-1344\sqrt{3}i -84(-2548+588\sqrt{3}i)^{\frac{1}{3}} -84\sqrt{3}(-2548+588\sqrt{3}i)^{\frac{1}{3}}i } }{ -3(-2548+588\sqrt{3}i)^{\frac{1}{3}}+ \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} +336-1344\sqrt{3}i -84(-2548+588\sqrt{3}i)^{\frac{1}{3}} -84\sqrt{3}(-2548+588\sqrt{3}i)^{\frac{1}{3}}i } }</math> <math>x_4=\frac{ 3(-2548+588\sqrt{3}i)^{\frac{1}{3}}- \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} +336-1344\sqrt{3}i -84(-2548+588\sqrt{3}i)^{\frac{1}{3}} -84\sqrt{3}(-2548+588\sqrt{3}i)^{\frac{1}{3}}i } }{ -3(-2548+588\sqrt{3}i)^{\frac{1}{3}}- \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} +336-1344\sqrt{3}i -84(-2548+588\sqrt{3}i)^{\frac{1}{3}} -84\sqrt{3}(-2548+588\sqrt{3}i)^{\frac{1}{3}}i } }</math> <math>x_5=\frac{ 3(-2548+588\sqrt{3}i)^{\frac{1}{3}}+ \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} +1848+840\sqrt{3}i -84(-2548+588\sqrt{3}i)^{\frac{1}{3}} +84\sqrt{3}(-2548+588\sqrt{3}i)^{\frac{1}{3}}i } }{ -3(-2548+588\sqrt{3}i)^{\frac{1}{3}}+ \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} +1848+840\sqrt{3}i -84(-2548+588\sqrt{3}i)^{\frac{1}{3}} +84\sqrt{3}(-2548+588\sqrt{3}i)^{\frac{1}{3}}i } }</math> <math>x_6=\frac{ 3(-2548+588\sqrt{3}i)^{\frac{1}{3}}- \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} +1848+840\sqrt{3}i -84(-2548+588\sqrt{3}i)^{\frac{1}{3}} +84\sqrt{3}(-2548+588\sqrt{3}i)^{\frac{1}{3}}i } }{ -3(-2548+588\sqrt{3}i)^{\frac{1}{3}}- \sqrt{-15(-2548+588\sqrt{3}i)^{\frac{2}{3}} +1848+840\sqrt{3}i -84(-2548+588\sqrt{3}i)^{\frac{1}{3}} +84\sqrt{3}(-2548+588\sqrt{3}i)^{\frac{1}{3}}i } }</math> === 研究难度对比 === [http://zh.wikipedia.org/wiki/%E4%B8%83%E9%82%8A%E5%BD%A2] == 三 == 代數方程<math>x^{n}+{{(\frac{\sqrt{p+4}-\sqrt{p}}{2})}^\frac{n-2}{n}}x=\frac{1}{p^{\frac{n}{2n-2}}} </math>存在李煌根式解形式 <math>x=\left(\frac{{(\sqrt{p+4}-\sqrt{p})}^{2}}{4p^{\frac{n}{2n-2}}}\right)^{\frac{1}{n}},p>0,p\in\mathbb{R}\lor p=-1</math> <math>x=\frac{\left(\frac{{(\sqrt{p+4}-\sqrt{p})}^{2}}{4p^{\frac{n}{2n-2}}}\right)^{\frac{1}{n}}}{\cos(\frac{2\pi}{n})+isin(\frac{2\pi}{n})},p<0,p\ne -1,p\in\mathbb{R}</math> <<[[School:李煌數學研究院]] [[Category:李煌数学研究院]]
返回
School:李煌數學研究院/伽羅華群論之n次方程研究
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息